Android 뉴스 
충전이 필요없는 밧데리(MIT)
작성자
작성일 2008-12-04 (목) 08:36
ㆍ추천: 0  ㆍ조회: 3449      
IP: 202.xxx.175

휴대폰 배터리를 충전하는 날도 옛말이 될것이다.
 
단 한 시간이라도 곁에 없으면 불안하다. 어쩌다 깜빡해서 집에 두고 나온 날이면 하루 종일 좌불안석이다. 현대인에게 없어서는 안 되는 문명의 이기 휴대폰 얘기다.휴대폰은 언제 어디서든 통화가 가능하지만 불편한 게 딱 하나 있다. 배터리 충전이다. 배터리가 떨어지면 근처 편의점에 맡겼다가 충전이 될 때까지 기다려야 한다. 식당 등 각종 업소에서는 손님들을 위해 배터리 충전 서비스도 실시하고 있다.

머지 않아 배터리 충전을 하지 않아도 스스로 알아서 전원을 끌어다 쓰는 똑똑한 휴대폰이 나올 것 같다. 휴대폰 사용자가 통화할 때 내는 목소리의 음파를 휴대폰이 전기 에너지로 변환시켜 스스로 충전하는 방식이다. 미국 텍사스 M대 화공과 타히르 케이긴 교수가 이같은 충전 방식을 개발했다고 ‘ ‘사이언스 데일리’가 3일 보도했다. 나노 기술을 전공한 케이긴 교수는 압전기(壓電氣. piezoelectrics)로 알려진 과학적 순환체계를 사용해 배터리 교환이 필요 없는 자가발전 체계에서 매우 의미있는 새로운 발견을 한 것이다.


<원문기사>
http://www.sciencedaily.com/releases/2008/12/081201162127.htm#

       Cell Phones That Never Need To Be Charged? Sound Wave-powered Devices Possible
       -----------------------------------------------------------------------------

Self-powering cell phone that never needs to be charged because it converts sound waves produced by the user into the energy it needs to keep running. It's not as far-fetched as it may seem thanks to the recent work of Tahir Cagin, a professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University.

Utilizing materials known in scientific circles as "piezoelectrics," Cagin, whose research focuses on nanotechnology, has made a significant discovery in the area of power harvesting – a field that aims to develop self-powered devices that do not require replaceable power supplies, such as batteries.

Specifically, Cagin and his partners from the University of Houston have found that a certain type of piezoelectric material can covert energy at a 100 percent increase when manufactured at a very small size – in this case, around 21 nanometers in thickness.

What's more, when materials are constructed bigger or smaller than this specific size they show a significant decrease in their energy-converting capacity, he said.

His findings, which are detailed in an article published this fall in "Physical Review B," the scientific journal of the American Physical Society, could have potentially profound effects for low-powered electronic devices such as cell phones, laptops, personal communicators and a host of other computer-related devices used by everyone from the average consumer to law enforcement officers and even soldiers in the battlefield.

Many of these high-tech devices contain components that are measured in nanometers – a microscopic unit of measurement representing one-billionth of a meter. Atoms and molecules are measured in nanometers, and a human hair is about 100,000 nanometers wide.

Though Cagin's subject matter is small, its impact could be huge. His discovery stands to advance an area of study that has grown increasingly popular due to consumer demand for compact portable and wireless devices with extended lifespans.

Battery life remains a major concern for popular mp3 players and cell phones that are required to perform an ever-expanding array of functions. But beyond mere consumer convenience, self-powering devices are of major interest to several federal agencies.

The Defense Advanced Research Projects Agency has investigated methods for soldiers in the field to generate power for their portable equipment through the energy harvested from simply walking. And sensors – such as those used to detect explosives – could greatly benefit from a self-powering technology that would reduce the need for the testing and replacing of batteries.

"Even the disturbances in the form of sound waves such as pressure waves in gases, liquids and solids may be harvested for powering nano- and micro devices of the future if these materials are processed and manufactured appropriately for this purpose," Cagin said.

Key to this technology, Cagin explained, are piezoelectrics. Derived from the Greek word "piezein," which means "to press," piezoelectrics are materials (usually crystals or ceramics) that generate voltage when a form of mechanical stress is applied. Conversely, they demonstrate a change in their physical properties when an electric field is applied.

Discovered by French scientists in the 1880s, piezoelectrics aren't a new concept. They were first used in sonar devices during World War I. Today they can be found in microphones and quartz watches. Cigarette lighters in automobiles also contain piezoelectrics. Pressing down the lighter button causes impact on a piezoelectric crystal that in turn produces enough voltage to create a spark and ignite the gas.

On a grander scale, some night clubs in Europe feature dance floors built with piezoelectrics that absorb and convert the energy from footsteps in order to help power lights in the club. And it's been reported that a Hong Kong gym is using the technology to convert energy from exercisers to help power its lights and music.

While advances in those applications continue to progress, piezoelectric work at the nanoscale is a relatively new endeavor with different and complex aspects to consider, said Cagin.

For example, imagine going from working with a material the size and shape of a telephone post to dealing with that same material the size of a hair, he said. When such a significant change in scale occurs, materials react differently. In this case, something the size of a hair is much more pliable and susceptible to change from its surrounding environment, Cagin noted. These types of changes have to be taken into consideration when conducting research at this scale, he said.

"When materials are brought down to the nanoscale dimension, their properties for some performance characteristics dramatically change," said Cagin who is a past recipient of the prestigious Feynman Prize in Nanotechnology. "One such example is with piezoelectric materials. We have demonstrated that when you go to a particular length scale – between 20 and 23 nanometers – you actually improve the energy-harvesting capacity by 100 percent.

"We're studying basic laws of nature such as physics and we're trying to apply that in terms of developing better engineering materials, better performing engineering materials. We're looking at chemical constitutions and physical compositions. And then we're looking at how to manipulate these structures so that we can improve the performance of these materials."
Adapted from materials provided by Texas A&M University, via EurekAlert!, a service of AAAS.
이름아이콘 들풀
2008-12-04 08:44
상용화 까지 얼마나 시간이 걸릴지 모르지만, 저전력 프로세서의 큰 흐름에도 영향을
미칠수 있겠군요.
   
이름아이콘 안드로이드
2008-12-04 08:48
와아 대단하다. 이런 기술이 있으면 대박이겠다 라고 생각했었는데. 드디어 나오는군요.
모든 아이디어는 불편함에서부터 출발한다는 말이 정말 맞는것 같습니다.
대박내고 싶으신분 주위에 뭐가 불편한지 한번 찾아 보세요.
   
이름아이콘 들풀
2008-12-04 08:58
안드로이드님 이른 아침부터..~ 출근해 계시는 군여. 좋은 아침입니다.
   
이름아이콘 인베인
2008-12-04 09:14
전 "불편함"보다는
인간의 "귀차니즘"이 있는한 이러한 기술과 과학은 영원하지 않나합니다.
쓰고나니 그게 그거네요..ㅎㅎ
   
이름아이콘 콩나물시루
2008-12-04 10:33
저는 핸펀으로 말하기 보다는 키보드 버튼 누르는 일이 더 많은데..
목소리 말고 버튼 누르는 힘으로 충전되는 기술은 안나올까요? ㅋㅋ
   
이름아이콘 들풀
2008-12-04 10:39
ㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎㅎ 역시...Dream Korea의 미래가 보이는군여.~
   
이름아이콘 인베인
2008-12-04 19:24
키보드 버턴 누르는 일이 많아도 ㅤㄱㅙㄶ찮습니다. 주변에 말을 하는 사람이 많으면 그사람으로부터 목소리 음파를 얻어 모바일폰용 밧데리 전기로 활용할수 있으니....ㅎㅎ
   
이름아이콘 들풀
2008-12-04 19:30
심지어 주변사람들까지? ㅎㅎㅎ 대단합니다..
전 그런 날이 오면..남대문시장에 발전기 설치해서 전기 장사하면 되겠네요..~
   
이름아이콘 simplecode
2008-12-04 19:41
콩나물시루님의 지적이 맞습니다.  현재의 휴대폰은 음성통화를 먼저 생각하지만, 이미 젊은이들 사이에서는 "휴대폰 = 문자생성기" (물론 게임기, 인터넷기, ... 새로운 형태도 있지만) 로 인식한다는 기사를 본 기억이 납니다.  문자입력기에도 관심을 가져주시길...
참고로 문자입력기 사이트를 소개해 드리면 다음과 같습니다.

http://www.simplecode.net

위 사이트의 상단 메인메뉴 [제품소개]를 클릭하고, 좌측 서브메뉴의 [다운로드]를 클릭한 후 "down&setupSimpleCode_Basic.exe" 파일은 설치하면, 문자입력기를 사용해 보실 수 있습니다.  pc용 문자입력기로 한손장애인 및 일반인을 위한 기능도 함께 제공하고 있습니다.  감사합니다.
   
 
덧글 쓰기 0
3500
※ 회원등급 레벨 0 이상 읽기가 가능한 게시판입니다.